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Abstract. It is shown that the zero-field Ising model is equivalent to a polymer model in 
which a bond of a polymer chain can assume one gauche and one trans state. The king 
model is defined on a lattice graph G of degree d = 4, whereas the polymer model is defined 
on a covering lattice digraph D' of out-degree d* = 2. As an example, a polymer model, 
defined on the Manhattan square lattice, is shown to be equivalent to the zero-field Ising 
model on the square lattice. The polymer model can be used to discuss the melting 
transition in polymers. 

1. Introduction 

Nagle (1973,1974) used several two-dimensional lattice models to discuss the theory of 
the melting transition in polymers. The models chosen there were all isomorphic to 
exactly solvable dimer and six-vertex models. This work was motivated by a number of 
equivalences between different counting problems on the square and other lattices, 
derived mainly from the study of the various vertex models (Rys 1963, Wu 1967, Lieb 
and Wu 1972). In particular it has been pointed out (Lieb and Wu 1972) that, on the 
square lattice, there is a one-to-one correspondence between six-vertex (ice) 
configurations and the configurations of non-intersecting polygons that cover all lattice 
points. Such polygonal configurations will be referred to here as close-packed 
configurations of polygons. Assigning an energy E > 0 (flex-energy) to certain steps of 
the polygons of such configurations, Nagle (1974) showed that the derived polygon 
(polymer) model is isomorphic to the well known F model (Rys 1963), solved by Lieb 
(1967). 

In Nagle's polymeric F model the close-packed configurations of polygons on the 
square lattice represent the configurations of a polydisperse system (polymer molecules 
of the system do not have the same chain length) of cyclic polymers constrained to the 
square lattice at maximum density (undiluted polymer system). Since in this represen- 
tation the polygons are non-intersecting, the excluded volume constraint, that any two 
polymer segments cannot occupy the same lattice point, is taken into account correctly. 
An intramolecular interaction of rotational isomeric type (Volkenstein 1958) may be 
introduced by assigning different energies to topologically distinct arrangements of 
successive lines (or steps) of a polygon. On the square lattice, Nagle specified two 
gauche states (preceding step at a 90" angle) and one trans state (preceding step at zero 
angle) for each step of a polygon (bond of a polymer). 

In the usual lattice model of melting transition in polymers (Flory 1956, Gordon 
1465), one employs a diamond lattice for the packing of the polymer chains and 
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postulates that the lowest conformational free energy of a polymer chain corresponds to 
the 'all-planar' trans conformation whereby any three successive bonds of the chain are 
coplanar. A state of higher energy will be generated if a bond is bent out of the planar 
form. Thus, a conformational energy of a bond depends on the orientation of the 
preceding two bonds, whereas in .the polymeric F model and in the model to be 
presented in this paper the energy of a bond depends only on the preceding bond. 
Hcwever, in both cases crystallisation in polymers is considered to be brought about as a 
result of chain 'inflexibility', i.e., as a result of the energetic preference for the trans over 
the gauche state. 

In this paper, we present a polymer model which can be transformed to the 
zero-field king model on a lattice graph G of degree d = 4. The polymer model 
involves another lattice digraph D' which can be obtained from G. The transformation 
takes place in several steps as follows. 

Step 1. Consider a lattice graph G of degree d = 4. 
Step 2. Obtain a lattice digraph D by assigning a direction to each line of G in such 

Step 3. Obtain the covering digraph D' (for definitions see 8 2). 
Step 4. Define a polymer model on D' as follows. (i) Let the configurations of the 

polymer system be represented by the close-packed configurations of co-oriented 
polygons on D'. (ii) Since there will be two lines directed away from each point, a bond 
of a polymer (polygon) can assume Oilly two states; depending upon the preceding 
bond, define one of these two states as the gauche state and the other as the trans state 
of the bond. 

Step 5. Prove that the polymer model on D' is equivalent to the zero-field Ising 
model on G (see 8 3).  

We point out that the lattice digraph D of step 2 is not unique, and therefore the 
Ising model on G is equivalent to many polymer models defined on D" for the various 
choices of D. 

An example is given in 0 4, where we show that a polymer model, defined on the 
Manhattan square lattice with the same rotational isomeric interaction as in Nagle's 
polymeric F model, is equivalent to the zero-field Ising model on the square lattice 
(Onsager 1944). 

a way that there will be two lines directed away from each point. 

We shall begin by setting out a number of essential definitions. 

2. Graph-theoretical preliminaries 

A graph G = G(P; E )  is a set P (the point set) of points and a set E (the edge set) of lines 
or edges joining certain pairs of distinct points. If two points p E P and p' E P are joined 
by an edge e E E, then p and p '  are adjacent or neighbours, and e is said to be incident 
with p and p ' .  Two edges are said to be adjacent if they have a point in common. The 
degree of a point is the number of edges incident with that point. A graph is regular if all 
its points have the same degree (to be denoted d ) .  A lattice graph is a regular graph 
whose points are joined with edges in  some repetitive way. An n-cycle or n-polygon 
is an alternating cyclic sequence of n > 2 distinct edges (the steps) and n distinct 
points of the form lpl, e l ,  p2 ,  e 2 , .  . . , p,, e , /  = / p 2 ,  e2, . . . , p , ,  e,, pl ,  ell =, . . . , = 
Ip,, e,, PI, e l ,  . . . , ~ ~ - 1 ,  en-ll,  in which each point pi is incident with the preceding 
(e i - l ;  e - l=en)  and the succeeding edge (e i ) .  If n is odd (even) the n-cycle is an odd 
(even) cycle. A subgraph of G is a graph obtained from G by deleting subsets of its 
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points and edges. A spanning subgraph is a subgraph that contains all points of G. A 
close-packed configuration of polygons of G is a regular spanning subgraph of G of 
degree 2. 

A digraph is a graph in which every edge is assigned a direction, from one point p 
(the initial point) to the other point p' (the final point). The edges of a digraph are called 
arcs. An arc will be denoted by a ( p ,  p ' ) ,  where ( p ,  p ' )  must be considered as an 
ordered pair of points. A digraph will be denoted by D = D(P; A ) ,  where P is the point 
set and A is the arc set of D. The out-degree (in-degree) of a point p is the number of 
arcs of D having p as their initial (final) point. A digraph is closed if every point has the 
same out-degree as its in-degree. A closed digraph is regular if every point has the same 
out-degree d* as every other point; we call such a digraph a closed digraph of out-degree 
d*. Two adjacent arcs of the form ( p ,  p ' )  and ( p ' ,  p " )  are consecutive or co-oriented, 
whereas two arcs of the form ( p ,  p ' )  and ( p " ,  p ' )  are called antidirected. If D is one of the 
possible digraphs which may obtained from a graph G, then G is said to be the graph of 
D (as an alternative the notation G ( D )  could be used; however, when no confusion can 
arise, the reference to D will be omitted). A circuit or co-orientedpolygon is an oriented 
cycle of the form 

lP1, (Pl, P2), p2, (P2, P3), p3 ,  (P3, P4), * ' ' , ( P n - 1 ,  P n ) ,  Pn, ( P n ,  PI11 

~ lP i - )Pz - )P3  -),..., - ) P n - ) / .  

An anticycle is an even oriented cycle of the form 

A close-packed configuration of co-oriented polygons of D is a closed spanning subgraph 
of D of out-degree 1. 

The covering digraph (often called line graph) D' of a digraph D is defined as 
follows. (i) To every arc ( p ,  p ' )  of D there corresponds a point p { ( p ,  p ' ) }  of D', and (ii) 
two points of D' of the form p { ( p ,  p ' ) }  and p { ( p ' ,  p " ) }  are joined by an arc of the form 
( p { ( p , p ' ) } , p { ( p ' , p ' ' ) } ) .  If D' is the covering digraph of D, then D is said to be the 
underlying digraph of D' and G (the graph of D )  is said to be the underlying graph of D' 
(note that G = G ( D ) # G ( D ' ) ) .  Not every digraph D has an underlying digraph; 
whenever the underlying digraph of D exists it will be denoted by D" (thus, by 
definition, (D')"=D). For an example see figures l(a) and ( b ) .  There are many 
characterisations of covering digraphs (Berge 1973). However, since, for the appli- 
cation we have in mind, we shall be concerned only with closed digraphs of out-degree 
d* = 2, we proceed to obtain a necessary and sufficient condition for such a digraph to 
be the covering digraph of some other digraph. Henceforth, we deal only with closed 
digraphs of out-degree d* = 2, which will simply be referred to as digraphs. 

If the points and the arcs of a digraph D can be partitioned to a set of arc-disjoint 
anticycles hl, h2, . . . , h, in such a way that every point p of D belongs to two anticycles, 
one out-going from p and one in-coming to p ,  then we say that D has an anticycle 
partition. If every hi is an n-anticycle we say that D has an n-anticycle partition. 

Theorem 1. The underlying digraph D" of a digraph D exists if and only if D has a 
four-anticycle partition. 
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la) lb) 

Figure 1. (a) A (square) lattice digraph D of out-degree d* = 2. (6) The covering lattice 
digraph D’of D is shown by oriented lines. The four-anticycle partition of D” is illustrated 
by full and broken arcs. Either all the arcs of a four-anticycle are full arcs or they are all 
broken arcs. The underlying graph G (square lattice) is shown by dotted lines. Opposite 
sides are to be identified. 

Proof. If D” exists (so that (D”)‘ =D),  let the points of D” be denoted byp, p ’ ,  pi and p i .  
Consider an arc ( p ,  p ’ )  of D” and its adjacent arcs ( p i ,  p ’ ) ,  ( p ’ ,  ph), ( p ’ ,  p i ) ,  ( p ,  p l ) ,  
( p 2 , p ) ,  ( p 3 , p ) .  By definition the following arcs are arcs of (D”)‘: 
( P { ( P ,  P’)}, P { ( P ’ ,  P m ,  ( P { M ,  P”, P { ( P ’ ,  P h N ,  ( P { ( P L  P’% P { ( P ’ ,  Pi)}), 
M P ,  P’H, P { ( P ’ ,  pi)}); ( P H P 3 ,  P ) ) ,  P ’ ) h  ( P ( ( P 2 ,  P ) ) ,  P { ( P ,  P ’ ) h  
( P { ( P 2 ,  P)), P { ( P ,  Pl))), ( P ( ( P 3 ,  P ) ) ,  PHP, Pl))). The first four arcs form a four-anticycle 
out-going from the point p { ( p ,  p ’ ) }  of (D”)‘, namely the four-anticycle 

The other four arcs form a four-anticycle in-coming to p { ( p , p ’ ) } ,  namely the four- 
anticycle 

IP{(Ps, P)}*+P{ (P ,  P ’ ) } + P { ( P 2 ,  P > } + P { ( P ,  P I ) } +  I. 
Therefore, every point p { ( p ,  p ’ ) }  of D belongs to two four-anticycles and since d” = 2 
every arc of D belongs to one and only one four-anticycle, i.e., D has a four-anticycle 
partition. In figure l ( b )  the arcs of a covering digraph have been distinguished as full 
and broken arcs in order to illustrate the four-anticycle partition. 

Conversely, suppose that D has a four-anticycle partition and let the points of D be 
denoted by p and p ’ .  Construct a digraph D’ as follows. (i) With every four-anticycle hi 
of D associate a point p { h i }  of D’, and (ii) with every point p of D whose out-going 
four-anticycle is hi and whose in-coming four-anticycle is hi associate an arc 
( p { h i } ,  p { h j } )  of D’. From the definitions of D’ and (D’)“, one can see that there is a 
one-to-one correspondence between the points of (D’)“ and the points of D. Identify 
the points of (D’)‘ with the points of D; thus p { ( p { h i } , p { h j ) ) } = p ,  where p is the 
common point of hi and hi. Let p ’  be one of the two points to which hi is in-coming and 
hk the four-anticycle that is out-going fromp’, i.e., p’  = p { ( p { h j } ,  p{hk})}.  The arc ( p ,  p ‘ )  
is an arc of @’)“because the arcs ( p { h i } ,  p {h j } )  and ( p { h j } ,  p{hk}) are consecutive arcs of 
D’. The arc ( p ,  p ’ )  is also an arc of D because hj is a four-anticycle of D ,out-going from 
p and in-coming top’. There is a one-to-one correspondence between the arcs of D and 
the arcs of (D’)“. Therefore, (D’)” = D and D‘ = D”. 
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Corollary 1. The number of close-packed configurations of co-oriented polygons on a 
covering digraph D" is 2N, where N is the number of points of the underlying graph 
W D ) .  

Proof. With every four-anticycle we can associate two pairs of non-adjacent arcs (see 
figure 2) which will be called the dimer states of the four-anticycle. By specifying the 
dimer state for every four-anticycle of D" we obtain a closed spanning subgraph of D" of 
out-degree 1, i.e., we obtain a close-packed configuration of co-oriented polygons on 
D" (see figure 3,O 4). By considering all the possible combinations of the dimer states of 
the four-anticycles of D" we obtain all the possible close-packed configurations of 
co-oriented polygons on D". Since the number of four-anticycles of D" equals the 
number of points of G, we have the desired result. 

Figure 2. A four-anticycle and its two dimer states (A and B). 

3. Equivalence of a polymer model on D' and the Ising model on G 

We consider the Ising model on a lattice graph G of degree d = 4. Every point pi 
( j  = 1,2 ,  . . . , N )  of G can assume two spin states which are described by the spin 
variable si (s, = f 1). A spin configuration {s} on G is obtained by specifying the values 
of all the variables si. There are 2N spin configurations on G. We also consider the 
covering digraph D" of any digraph 13 of G. D" has a four-anticycle partition 
h l ,  h2, . . . , hN. Think of the two dimer states of a four-anticycle hi of D' as the two spin 
states of the point pj=p{h,}  of G. Thus, by this representation we can state (see 
corollary 1) the following proposition. 

Proposition 1. There is a one-to-one correspondence between spin configurations on G 
and close-packed configurations of co-oriented polygons (polymers) on D". 

Suppose that the two dimer states (s, = f 1) of any four-anticycle h, are such that the 
two dimers of the s, = +l dimer state are both of type A (say horizontal), whereas the 
two dimers of the s, = -1 dimer state are both of some other kind B (say vertical). For a 
point p of D'whose out-going four-anticycle is h, and whose in-coming four-anticycle is 
h,, assume that s, = +l. Then, the arc (bond) out-going from p can be in two states with 
respect to its preceding arc, i.e., either we have an A-A state (s, = +1, s, = +1) or an 
A-B state (sz = +1, s, = -1). Similarly, if s, = -1 we have the states B-B (s, = -1, s, = 
-1) and B-A (s, = -1, s, = +l). We define the A-B (or B-A) state as the gauche state 
and the A-A (or B-B) state as the trans state of the arc of D'out-going from any point p .  
If the dimer states of the four-anticycles of D" are (topologically) incomparable, then 
the distinction between type-A and -B dimer states is arbitrary. As a result, the 
topology of a trans (gauche) state of an arc may not be the same for all arcs of D". 
However, if all four-anticycles of D" are of the same 'form' (see figure l (b ) ) ,  then the 
concept trans and gauche are well defined. 
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Proposition 2. There is a one-to-one correspondence between arcs in gauche states of a 
given close-packed configuration of co-oriented polygons on D" and pairs of neigh- 
bouring spins in opposite spin states of the corresponding spin configuration on the 
underlying graph G. 

4. Application to a lattice graph 

Propositions 1 and 2 establish the equivalence of the zero-field Ising model on G and 
the polymer (polygon) model on D" in which gauche and trans states of a polymer bond 
are defined to depend upon the preceding bond. We proceed to illustrate this by an 
example. Consider the lattice digraph shown in figure 3. Following Kasteleyn (1963), 
we call this digraph 'the Manhattan square lattice (MSL)'. The MSL is the covering 
digraph of the digraph shown in figure l(a).  The underlying graph of the MSL is the 
square lattice (SL) shown in figures l ( b )  and 3 by dotted (unoriented) lines. Note that we 
have used diagonal periodic boundary conditions on the MSL in order to obtain ordinary 
boundary conditions on the underlying SL. 

Figure 3. Full circles and oriented lines (full or broken) show the Manhattan square lattice 
(MSL). Open circles and dotted lines show the underlying square lattice (sL), plus and minus 
signs in the open circles specify a spin configuration on this lattice. A plus sign corresponds 
to two arcs of the MSL that form a dimer state of the associated four-anticycle, one arc 
pointing upwards to the right at 45' and one arc pointing downwards to the left at 45". A 
minus sign corresponds to the dimer state formed by two arcs, one pointing upwards to the 
left at 45' and one downwards to the right at 45". The dimers of a dimer state are shown as 
full arcs. Full arcs show the close-packed configuration of co-oriented polygons on the MSL 
corresponding to the spin configuration on the underlying SL. 

We define a polymer model on the MSL as follows. 
(i) The configurations of the polymer system are represented by the close-packed 

configurations of co-oriented polygons on the MSL. 
(ii) We specify rotational isomerism: an arc (bond) of a co-oriented polygon 

(polymer) is on a gauche state (energy E > 0) if it is at an angle of 90" to its preceding arc 
and it is on a trans state if it is at zero angle (collinear) with its preceding arc. Since 
d" = 2 for every bond there are two states, one gauche and one trans state. 
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Let the variable describing the spin state of the jth point in the kth row of the SL be 
denoted Sj,k (Sj ,k=i l ;  j = 1 , 2  , . . . ,  n ;  k = 1 , 2  , . . , ,  m ;  n = n * ;  m=ym*; N = n m ;  
N *  = n *m *) where m and n are the numbers of rows and columns of the SL, and m * and 
n* the numbers of rows and columns of the MSL. To match the energies we note that, if 
Ef,)(J) is the energy of a spin configuration {s} on G-for an Ising ferromagnet with an 
interaction energy J > 0 between neighbouring spins-then 

1 

The energy of a close-packed configuration of co-oriented polygons on D‘, E $ } ( € ) ,  

corresponding to a spin configuration {s} on G, is given by 
n m  

j= l  k = l  
Ec}(e)  = ; E  1 [(I -Sj,ksj+l,k)+(l -sj,ksj,k+l)l 

The corresponding partition functions are therefore related by 

Z;*,,,*; ( E ,  T )  = exp(-mnc/kT)Z!,,,, ( + E ,  T )  

where 

zk ,n(J ,  T )  exp(-Eb(J)/kT). (4) 
b} 

Clearly, the model has the same transition features as the zero-field Ising model on 
the square lattice, with the well known logarithmic singularity of the specific heat. The 
critical temperature, T,, is located by sinh(e/kT,) = 1. However, we shall not discuss 
transition features here since there is a vast literature on the subject. 

5. Concluding remarks 

It has been shown that the zero-field Ising model on a lattice graph G of degree d = 4 is 
equivalent to a polymer model defined on a covering digraph D’. The transformation is 
not restricted to two-dimensional, or planar, lattice graphs; it can be applied just as well 
to three-dimensional lattice graphs, the only restriction being that the lattice digraph- 
on which the polymer model is defined-is a covering digraph of out-degree d* = 2. The 
present paper offers a new and interesting interpretation of the Ising model. Further- 
more, it suggests that even a polymer system with one trans and only one gauche 
rotation for each bond may exhibit sensible phase transition behaviour. This is in 
contrast with the behaviour of the ‘dimer model B to a polymer chain’ presented by 
Nagle (1973,1974), which also has one gauche rotation, but the model remains ‘frozen’ 
in its ground state. 

We also suggest that transition features of a polymer model depend on the number 
of gauche rotations assumed by the bonds of the polymer chains. To support this we 
compare the polymer model on the MSL and Nagle’s polymeric F model on the SL. Both 
these models are isotropic (neither lattice direction is preferred) and they have the same 
rotational isomeric interaction. However, in the former a bond can assume only one 
gauche rotation, whereas in the latter a bond can assume two such rotations. These two 
models have very different behaviour: the F model undergoes an infinite-order 
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transition with a finite and continuous specific heat at T,, whereas the Ising model has a 
logarithmically diverging specific heat at T,. This dramatic change in behaviour must be 
related to the loss of the second gauche rotation. 

The order-disorder model, termed ‘polymer model’ in this paper, may be appro- 
priate to describe the melting transition in polymers (Flory 1956, Nagle 1974, Malakis 
1976) or transitions in polymeric systems such as biological membranes (Nagle 1973). 
The polymer melting model was originally introduced by Flory (1956), who used an 
approximate method (known as the Flory-Huggins approximation) in order to obtain 
an expression for the partition function. This approximation has been examined 
critically by Nagle (1974), Gordon et a1 (1976) and Malakis (1976). 

Nagle’s polymeric F model and the model in this paper are, as far as we are aware, 
the only isotropic polymer models which can be solved without resorting to any kind of 
approximation. Of course, they are not ideal polymer models, their main defect being 
the existence of short cyclic polymers, at least above T,. Also, it should be pointed out 
that the main simplification rendering both these models ‘exactly’ solvable is that one 
does not fix the chain length of the polymer chains, but rather allows the chain length to 
vary with temperature. 
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